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Outline

« The LISA data set:
— Time delay interferometry
— The synthesized observables
* Analysis techniques and challenges:
— Bayesian inference: Markov Chain Monte Carlo methods
— Matched-filtering
— Incoherent methods
— Hierarchical strategies

« Conclusions
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LISA: a GW telescope

« LISA s an all-sky monitor: * One year of LISA data
— All sky surveys are for free contains:

— “Pointing” is done in software —
» LISA has guaranteed sources
« Signals are (for the vast majority)
long lived —

* Information about the sources
are reconstructed through the
structure of the recorded signal —

— Intrinsic in the waveform —
— Induced by instrument motion
and response
« Each signal depends (with a few
exceptions) on 7-to-17
parameters

Several known solar mass
binaries (verification
sources)

~ 10000 resolvable WD
binaries (a few with NS
companion)

~ 100 EMRIs
~ 10 I/M/SMBH binaries

Some short lived burst
events

Stochastic foregrounds and
backgrounds
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GW observations from
space and ground

« LISA « LIGO/GEO/VIRGO/TAMA
« Small data volume: « Large data volume:
~108 (T/3 yr) (fs/1 Hz) data ~ 100 (T/1 day) (f5/10 kHz) data
points points
« Signals: : _
« Signals:
— Many
. — Rare
— Long and short lived

— Long and short lived
— De facto non overlapping
— Weak (h << n)

* Network of several

geographically separated
instruments

— Overlapping

— Variety of signal strength
(fromh >nto h <<n)

* One observatory with co-
located instruments
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The LISA “interferometer”

« Gravitational waves
passing trough the LISA
constellation affect the
separation between test
masses

« This is monitored by
comparing the locally
generated frequency with
the frequency of the
received laser signal

* The raw data set:

six 1-way Doppler links
(+ housekeeping channels)
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One-way Doppler link

 The effect of GWs on each
one-way Doppler link is 2

1 A0k (hk[2] — hiill
a(t) = L A Chsnl2) — 1)
2 1—?’2,]]43]'

Test masses

(Estabrook and Wahlquist 1975)
S/C

* 7‘Ti "'

V

Laser
beams
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" Contributions to the one-way link

 The contributions to the observable y,(t) are
(schematically):

yi(t) = Ci(te) - G(t) + n+ h

— C(t): contribution due to laser frequency noise which is many
orders of magnitude above h and n

— n: secondary noises (acceleration and photon shot noise)
— h: GWs, what we are interested in

« Key issue: how can one suppress the dominant
contribution from laser noise?
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Time Delay Interferometry (TDI)

 One can construct combinations
that cancel e.g. C,(t):

Yo1(t) - y3q(t) = [Cy(t) -
[C,(1) - Cy(t-L)]
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Time Delay Interferometry (TDI)

« TDI: linear time-delayed
combinations of y, (add and 2
subtract 1-way Iinks to create
a close loop) that cancel laser
noise

* An example: synthesized
(equal-arm) Michelson

interferometer
[Vo1(t) = Yio(t-L)] - [y34(t) - y45(t-L)] =
C,(t) - + -Cyt2n)]- 1
[C,(t) - Ca(t-L) + C,(t-L) - Cy(t-2L)] =
-0+n+h e
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Sagnac (o)

Symmetrized
Sagnac ({)

Insensitive to GW at f << 10 mHz
(~ 1/L): it allows us to obtain a
noise only channel at low

frequency

Unequal-Arm Michelson (X)

Th\e zoo of TDI variables

Beacon (P)

sensitivity for SNR = 5, 7 = 1 year
equilateral triangle, L = 16.67 seconds

Symmetrized

(Armstrong, Estabrook and Tinto, 2001)

]

amplifuge:

Sagnac

€Qe, 18, 4059 (2001) |
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The LISA observables:
the data set

Not all the combination are statistically independent

Full information about the GW sky are contained in 3
independent data streams (e.g. A, E, T)

LISA science is in ~ 10° data points

Observables:
h(t) = £, F,(t; source location) h,(t;physics)

Many papers: Armstrong, Estabrook, Tinto, Vinet, Dhurandhar,
Nayak, Vallisneri, Cornish, Larson, Prince, Shaddok, Romano,
Woan.....
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First generation TDI: cancel laser i
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Earth

noise for a static constellation

However:
— Constellation rotates
— Arm length is not constant (flexing)

Second generation TDI: accounts
for rotation of constellation and
relative motion of spacecraft

The second generation TDI observables are obtained
as linear combinations of first generation TDI
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Sensitivity:

f=3 mHz
(fixed 1)

19th June 2006

LISA: all-sky monitor

(Rogan and Bose, astro-ph/0605034)
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Extracting information

* Information about sources large spin
are reconstructed through / K
TR T TIT T |.|-/ TN T T

structure of signal
— Intrinsic in the waveform

— Induced by instrument
motion and response

[a]
bojoLizg (oD hpyas

I- a.r- 5 [

Y Example: MBH binary B aoi ;mh naz *01 , =omeoesiman ol Somid
inspiral s EPEI: ﬁ
LI ' - 1
SA ro’Fatlon. Zd ]
around its axis ; 1 E
S ma” Sp i n % ::5:'“01 \a.;'.;nst:lai_i.aoo oai-g._am'rj ::-51:'?01 \a.;'.;nsuaii.am oaf—smli

boyswuzywiion emebprnos

botruyzegon mwtbiitngs

19th June 2006 A Vecchio - LISA Data Analysis 15




5% 109 km
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Done in software: by matching
(position dependent) amplitude
and phase modulations

f~fow (Visa/€) ~ 107 (fsy /1 mHz) Hz

orientation

£~2/T;qa~7_ 108 Hz

T

Frequency/ Hz

~1 mHz
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LISA data analysis

+ Given the data set(s):,_— N >> 1 and unknown

N
d(t) = > _hj(t; Aj) +n(t)
Waveform (convolved with the /'
instrument response): could either

be well modeled or poorly known

« We want to identify the signals and extract
information on the unknown parameters A

« Bayesian approach: derive the posterior probability
density function (pdf)

* Frequentist approach: construct a detection statistic
(filter the data)
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LISA data analysis issues

« Source specific:
— ldentify each source down to the detection threshold

— Many similarities with LIGO/GEO/VIRGO

* Global analysis:

— Extract information (do astronomy, cosmology and
fundamental physics) with large number of overlapping
sources (both loud and weak signals)

— ... so large they become confused in a significant portion of
the observational window
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Bayesian inference

« Bayes’ theorem: the appropriate rule for updating our
degree of belief (in one of several hypotheses within
some world view |) when we have new data:

Posterior Likelihood ;mr

\, N
p(datalmodel, I') p(model|I)
del|data, I) =
p(model|data, I) p(datal])

Evidence, or “global likelihood”

« A consequence of the product rule:
p(alb) p(b) = p(bla) p(a)
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Technical problem: integration

 The model - £ h(A) - depends on a very large number
of parameters (~ 10°)

* We are usually interested in pdf's of one parameter at
the time: marginalization

p();) = / / p(N A1 dj_1 ... d)jd )y

« The difficulty is the integration (large number of
dimensions)
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Markov Chain Monte Carlo
(MCMC) methods

 We need to evaluate integrals of the form:

p();) = / / p(N)dA1 dAj_1 ... dNj1d Ay

« The strategy is to sample the space (A,,A,,..,Ay) SO that the density
of the sample reflects the posterior probability p(A4,A,,..,Ay)

« MCMC algorithms perform random walks in the parameter space
so that the probability of being in a hypervolume dVis p dV

 The random walk is a Markov chain: the transition probability of
making a step depends on the proposed location X’ (A,A,,..,A\)
and the current location x(\,,A,,..,Ay)

« MCMC methods have demonstrated success in problems with
large parameter number (Google, financial markets, WMAP....)
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An algorithm: Metropolis-Hastings

We want to derive p(x)
Assume we are at location x,

|.  Choose a candidate state x,’ using A
a proposal distribution q(x; |x) '
ll. Compute the Metropolis ratio
_ p(=t) p(d|a;)q(z|z})
p(z¢) p(d|z)q (x| z:)

I1l. If >1 then make the step: x,,, = x;’

if r<1 then make the step with probability r, otherwise set x,,, = X,
so that the location is repeated

i.e., make the step with an acceptance probability

a(:v”:ct):min{l p(z};) p(d|z})q (wzlwt)}

' p(zt) p(d|ze)q(x}|z:)

V. Choose next candidate based on the (new) current position...
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e
=R .
Examples: Source confusion

N = 100 sinusoids (N unknown)

Posterior model probabilities

3 |
. A few (N known) WD binaries
:(% §— 0.04 T T T 0.04 T T T
8 ° |
e o

g ] 0.02

8 |

° 92 93 94 95 96 97 98 99 100 o

model m
(Umstaetter et al, 2005)

(Cornish and Crowder, 2005;
Cornish et al, 2006)

0.02 -
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Example: MBHB (+ DWD)

MBH binary

binary + WD binary
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0.0 il 0 | 0 I ]
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(Cornish and Porter, gr-qc/0605089
with foreground gr-qc/0605135)
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Matched filter

 Given the data set:

—

d(t) = h(t; X) + n(t)

« Construct a detection statistic ¢ [here q is the filter or template]:
c= [d(n)a (fdf

* The signal to noise ratio is:
Efc|

Oc

(8/N) =
« Optimal filter (i.e. highest SNR) is:

§(f) — kh(f; N)/S(f)
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M

atched filter - an example

- Data |
w» 04r | — Time-shifted template ‘
AN *
2
2 okD AR AL Lan Adlan t AL .hls lka.,d A
@ ;, ¥ AR N A ' Y YW Wl TV LB ‘ '
S 02
< -0.4F
-06F 1 1 L i 1
0 50 100 150 200 250
Time
T T L} R T ————
| e Correlatlon vs. time shift |
4t - -
S 3} -
=
& 2
3
1 e
o A - . A A
0 50 100 150 200 250
Time shift
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Signal-to-noise ratio (SNR)

* The (matched-filter) SNR or optimal SNR is:
/N7 = (i) =4 [~ Py

« The optimal SNR scales as the sqrt of the integration
time (or the number of recorded wave cycles): one
can “dig into” the noise:

(f)]
;'IIIS (f) ;
h'2

o< f.T e € h can be << h,¢
104 (f1 mHz) (TH07s) —
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Geometric approach to data
analysis
« Scalar product between

a signal and a template
(or two signals):

Signal manifold

ity =2 [T ORI + 5D

S(F) o 0

« Signal-to-noise ratio:

8}
(S/N)? = (h|h) _1/ 'h

Dhurandhar and Sathyaprakash (1993)

Owen (1996)
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Fisher information matrix

 Likelihood (for S/N >> 1):

p(Xls) X exp[—;l‘abA)\“A/\b}
« The Fisher information matrix is: 'wy = (G.h | Gsh)
 The variance-covariance matrix X is the inverse of I

« Statistical mean square errors and correlation
coefficients:

(ANSAND)

Oq0p

00 = ((AN))? = VEa =

Note: this provides a lower bound to the error
(Cramer-Rao bound)
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Parameter determination: MBHB

MBH binary systems

m, =10% M,

m, = 10 M,

z=1

* Error box in the sky ~ 1 deg?
VYV AD/D ~0.01-0.1

VY Am/m ~ 104 -0.1

Many papers: Cutler (1998),
Hughes, Holz, Cornish, Krolak,
Buonanno, Berti,

Will, Sathyaprakash, AV...

19th June 2006
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Parameter determination: EMRI

Am AM S 4 AD

—~—~A ~ 10 AG ~2° —~0.05

m M M? D
o M- 0.1 0.1 0.1 5 0.5 0.5 1 1 1
€150 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5
A{In M) 2h8e—4 B.Be—d 52e-5|2.Te—41 P.2e—4 T.Te—5 2.8e—4 2.5¢—4 1.5¢—4
A(S/M?) | 3.6e—58 T.9e—5 4.5e—5(1.3e—4 B.3e—4 5.1e—5 2.6e—4 3.Te—4 2.6e—4
AlIn ) B.Be—B 1.Be—4 T.4de—5|H.8e—5 P.2e—5 1.0e—4 B.1le—5 Dle—5 1.0e-3
Mleg) B.2e—5 1.3e—4 2.0e—5| B.Be—b 2.Be—4 3.2e—5 1.2¢—4 1.1e—4 1.e—4
AlcosA) B.0e—2 L.Te—2 1.2e—3|1.2¢—2 [.Be—3 2.de—4 6.5e—4 B.de—4d 4.Te—4
AYET™| 1.8e—2 1.Te=3 T.De—4d|2.0e—3 [L.Te—3 T.he—4 2.1e—3 1.1le—3 B.Te—4
A8 ) B.Ae—2 B.2e—2 4.Te—2|55:—2 B.le—2 4.Te—2 5.6e—2 5.le—2 4.8e-12
Ml 4.0e—1 B.2e—1 2.8e—1|1.0e+0 [B.le—1 3.9%e—1 9.2e—1 2.de—1 2.9e—1
FAY Ry 2.8e—1 B.Te—1 2.2e—1|1.de40 [F.Be—1 2.Te—1 1.5e40 1.Te—1 2.3e—1
Mlap) f.2e—1 B.Be—1 BBe—1|8.2¢—1 B.9%—1 5.fe—1 Ade—1 B.De—1 5.De—1
Alln(p/D]] B.7e—2 2.Be—2 3.Te—2|3.8:—2 B.Te—2 3.Te—2 3.Be—2 T.De—2 2.Te-2
Nt g 15e—2 1.le—1 3.2e—=2|2.2¢—1 [L.2e—1 4.4e—2 2.5e—1 3.2e-2 B5-12

(For 10 My onto 10° M at 1Gpc, for various eccentricities and spins)
Barack and Cutler (2004)
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.
~  Geometric approach to data
analysis

Extrinsic parameters (t,,¢,)

Match: //trinsic parameters (m, S\..
u(

(i, Mlu(ji + Afi, X+ AX))

Signal manifold

X
wApR L
- 1( &M ey
~14 = AN AN e
M AN~ 1+ (amz‘amj) AXe—0
(X)) = _1 __QE_M__ i
I\ = 79 \ BANOAN ) ark=o o
. @
1 — M =g,;axiax | Distance between o

signal and template 9

Metric on parameter space Owen (1996)
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Example: template bank for
binary in-spiral

o T
My <m;m, <3 M, LIGO search for
Minimal match = 0.97 binary inspirals
Region we |
c want to cover | Region covered
s " by this filter
= ]
N
E /
"‘—~--_-:M__-:::::? —
D 1 1
1 Vi 3 4 a
m1/ I\/Isun
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Computational costs for EMRI

Numnber of templates vs. duration of integration

10"

-
S,

_.
O_

Number.of.filters

...
OA

6x10°

SR

m=1M__ M=10"M__ . 1=10""Hz, e=0.4, S=0

30 days

10"

10'

time

(Barack and Cutler)
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Sub-optimal methods

« Matched filtering is not a
viable strategy if: Look for hot pixels

— Theoretical waveforms are
not accurate enough (such 4 2“
as poorly modeled burst 300
signals - e.g. final plunge of éu
MBH binary) >
: Q| feeo
— Computational costs are too §
high (e.g. EMRI) =3 N han
: @
« Alternatives: ol B
— “Incoherent methods” "
— Hierarchical methods 200 |
0 010203040505 07 0#.‘;9“2

>
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An example: EMRI

Hierarchical sche\me

Power density in t-f box P=> P,

Hz)

z

= =
- "

=
=
2

_ frequency (

k=1

—
\.\.

Time

£ s b2

time (yr)

(Wen and Gair, 2005)
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Coherent templates

(T Creigthon, Gair, ..)
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Stochastic signals

 The detection of stochastic

signals depends on LISA multiple
observable

— Cross-correlation (a la LIGO) are not

UG a
3-

pOSSible LIE-+A L' 43 CHD B+ OV
— Symmetrized-Sagnac (essentially T e
insensitive to GWs at low frequency) ;= /
is likely the key 3 |
« As of today we do not have a ) R
solid strategy to detect an

XONSE

L5 £ 4% 4 45 . IS5 D LE 0 LF 0

Isotropic stochastic signal

IogirHz)

(Hogan and Bender, 2001)

19th June 2006 A Vecchio - LISA Data Analysis 37



Conclusions

« LISA data analysis poses a wide spectrum of
interesting problems:
— Specific to LISA and GW observations
— General with implications for other fields of astronomy

* The outstanding issues are gradually being resolved
« ... but there is still a lot of work to be done
« Many more details in plenary and parallel sessions
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A new way to look at TDI

 (Consider 2 data streams:
s,=p+n,+h,
S,=p+n,+h,

NOISEeS:

p is common noise: <p> =0 and <p?> = ¢,?
Ny,: <N2>=<n,?>=0,2

n and p are uncorrelated: <n,n,> = <n,p>=<n,p>=0
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All info are in the likelihood

 Likelihood:
1
p(sl’ S2|a)OCexp|:—§Q:| Q=(6—-—ht-C!'-(s—h)
— S: — n; ~1 s:— h:
« C is noise covariance matrix iJ.Zzl( i~ h)Cyj(s; = hy)
82
/ Cij = ((s; — h))(s; — h;))
/ o’ + o’ o>
¢ C=| "7 " p
2
// ( Op oy + o,
2a vsl
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Principal component analysis

« Find eigenvalues/vector of C and diagonalize:

A = AR + 82,

p(s1, s2la) < p(s.la)p(s_|a),

§_ = 1 7 &
(5. |a) m 1 (s, — 3a)? s_ |
s.|a) x exp| — = —5—— ,
P p_ 2407 + 20,2,} VA

p(s_|a) = expp —1 (.s_—a)z} a +— _6; *

2 207
* For LISA 6,2>>0,2, so there is no loss

statistical inference only on the s_ tern
observable (Romano and Woan, 2006)
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Noise
« Assuming Gaussian and stationarv noise:
— Mean: (a(f)) =0
~ Variance  (a(/)(f)) = , S(NS(f ~ 1)

 rms fluctuation of the noise in a band Af is:

hrms(f) — \"'/‘Af S(f)
hrms(f ) - \"'jf S (f )

19th June 2006 A Vecchio - LISA Data Analysis
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The StackSlide Method ="

« Break up data into segments; FFT each, producing Short (30 min)
Fourier Transforms (SFTs) = coherent step.

« StackSlide: stack SFTs, track frequency, slide to line up & add the
power weighted by noise inverse = incoherent step.
*  Other semi-coherent methods:
— Hough Transform: Phys. Rev. D72 (2005) 102004; gr-qc/0508065.
— PowerFlux: see next talk, W11.00005

*  Fully coherent methods:

— Frequency domain match filtering/maximum likelihood estimation (C7.00001;
W11.00006)

— Time domain Bayesian parameter estimation (C7.00002)

 Improvements and hierarchical pipeline under elopment.
Track Doppler shift and df/dt

Frequency
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5 years, 1 solar masses
1 year, 0.5 solar masses
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Example: EMRI

EMElecelWA 2 noHighOrder 40000 datapoints, At=10sec

[ I g TSR 0

60 —
40
20

Lo T SRS S

- (Stroeer & Gair)

15 [+ s L I H
- ] 0.8
10 - - 0.4
S F i 0.2
D_ 1181 |EIIII_ D I:!|III|IIIIII|
2.0 26 2.7 2.8 5bh 6 BS5 ¢ VO
th:\;I.
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